ON THE ARC-WISE CONNECTION RELATION IN THE PLANE

GABRIEL DEBS AND JEAN SAINT RAYMOND

ABSTRACT. We prove that the arc-wise connection relation in a G_{δ} subset of the plane is Borel.

Keywords: Borel sets, Arc-connectedness, plane topology

AMS subject Classification: 54H05, 03E15

Let X be a separable metrizable space. By an arc we mean as usual a compact space homeomorphic to the unit interval $\mathbb{I} = [0,1]$. We recall that the set $\mathcal{J}(X)$ of all arcs in X is a Borel subset of the space $\mathcal{K}(X)$ of all compact subsets of X in the Vietoris topology (see [2]). In particular if X is a Polish space then $\mathcal{K}(X)$ is Polish too, hence $\mathcal{J}(X)$ is an absolute Borel space, and it follows that the arc-wise connectedness equivalence relation E_X in X is analytic.

In [3] Kunen and Starbird constructed a compact connected set $K \subset \mathbb{R}^3$ with an (analytic) non Borel arc component, hence with E_K non Borel. This result can be strengthened in various directions, for example one can impose that all components of K are non Borel ([4]) or that all components of K are Borel but E_K is non Borel ([1]). However in all these constructions working in a three dimensional space is fundamental, and in ([3], Problem 1) Kunen and Starbird asked:

Question: Is there a compact connected set $K \subset \mathbb{R}^2$ with a non Borel arc-wise component?

In fact this question is actually equivalent to ask whether the equivalence relation E_K itself is Borel. Indeed Becker and Pol showed ([2], Proposition 5.1) that for a G_{δ} subset X of the plane if all arc components are Borel then the equivalence relation E_X is Borel. They also pointed out that no example of a G_{δ} subset of the plane with a non Borel relation E_X , is known; and the main goal of this note is to prove:

Theorem 1. If X is any G_{δ} subset of the plane then the equivalence relation E_X is Borel.

Let us first fix some notation and recall a few basic facts.

Arcs: For an arc J we denote by e(J) the set of its endpoints and we set $J=J\setminus e(J)$. The mapping $e:J\mapsto e(J)$ from $\mathcal{J}(X)$ to $\mathcal{K}(X)$ is Borel, even of the first Baire class. Also if we endow X with some Borel total ordering < (via any Borel embedding of X in 2^{ω}) and set $e_0(J)=\min(e(J))$ and $e_1(J)=\max(e(J))$ then the mappings $e_i:\mathcal{J}(X)\to X$ are also Borel. We also recall that given any path in some space X, that is a continuous, non necessarily one-to-one, mapping $\varphi:[0,1]\to X$, there exists an arc $J\subset\varphi([0,1])$ such that $e(J)=\varphi(\{0,1\})$.

Triods: By a simple triod in a space X we will mean a compact subset $T = J_0 \cup J_1 \cup J_2$ which is the union of three arcs J_i such that:

$$\forall i \neq j, \ J_i \cap J_j = \{c_T\}.$$

The arcs J_i , which are uniquely determined up to a permutation, are called the *branches* of T; and c_T is called the *center* of T.

Notice that this notion is more restrictive than Moore's initial notion of triod introduced in [6] where the branches J_i are only assumed to be irreducible continua. In particular since the set $\mathcal{J}(X)$ of all arcs is a Borel subset of $\mathcal{K}(X)$ and the \cup and \cap operations on $\mathcal{K}(X)$ are Borel, it

follows from the unicity of the decomposition of a simple triod, that if X is Polish then the set $\mathcal{T}(X)$ of all simple triods in X is a Borel subset of $\mathcal{K}(X)$ and the mapping $\mathbf{c}: \mathcal{T} \to X$, which assigns to any simple triod T its center c_T , is Borel. We also recall the fundamental property of planar triods (see [6]):

Lemma. (Moore) Any family of pairwise disjoint triods in the plane is countable.

Arc-wise components: If C is an arc-wise component in some separable metrizable space X then:

- either $C = \{c\}$ is a singleton and we shall then say that c is a quasi-isolated point in X,
- or C admits a one-to-one continuous parametrization $\varphi: I \to C$ where I is a (closed, open, half-open) interval in \mathbb{R} or the unit circle, and we shall then say that C is a *curve component*,
- or else C contains a *simple triod* and we shall then say that C is a *triodic component*. In particular any non triodic arc-wise component is σ -compact. For more details we refer the reader to [2].

Proof of Theorem 1: By ([2], Proposition 5.1) we only need to prove that any triodic arc-wise component of X is Borel.

Since X is a Polish space we can fix a complete distance d compatible with the topology of X, and define $\delta: X \times X \to [0, \infty]$ by:

$$\delta(x,y) = \inf\{\operatorname{diam}(H): H \text{ arc-wise connected s. t. } \{x,y\} \subset H \subset X\}$$

where $\inf \emptyset = \infty$. So if $x \neq y$ are in the same arc-wise component then

$$\delta(x,y) = \inf\{\operatorname{diam}(J): J \in \mathcal{J}(X) \text{ s.t. } e(J) = \{x,y\}\} < \infty$$

and if not then $\delta(x,y) = \infty$. Moreover setting by convention $\alpha + \infty = \infty$ for any $\alpha \in [0,\infty]$ we have for all $x,y,z \in X$

$$\delta(x,z) \leq \delta(x,y) + \delta(y,z)$$

Hence δ induces a metric on each arc-wise component, and defines a topology τ on X; and since $\delta \geq d$ then τ is finer than the initial topology t induced by \mathbb{R}^2 . But unless stated otherwise all topological notions are to be understood relatively to t. Notice that for an arc connected subset $H \subset X$ the d-diameter diam(H) and the δ -diameter are equal since for any $x, y \in H$:

$$d(x,y) \le \delta(x,y) \le \operatorname{diam}(H).$$

Lemma 2. Each arc-wise component C of X is a clopen subset of (X, τ) and the metric space (C, δ) is complete.

Proof. If $x_0 \in C$ then $C = \{x \in X : \delta(x, x_0) < \infty\}$ is an open subset of (X, τ) , and the same holds for any other components. So all components are open, hence closed.

Suppose that (x_n) is a δ -Cauchy sequence. Since $d \leq \delta$ then (x_n) is a d-Cauchy sequence hence converges to some $x \in X$. We can also extract from (x_n) a subsequence (x'_n) satisfying for all n > 0, $\delta(x'_n, x'_{n+1}) < 2^{-n}$ and we can fix then an arc J_n with $\operatorname{diam}(J_n) < 2^{-n}$ and a continuous function $\varphi_n : \left[\frac{1}{n+1}, \frac{1}{n}\right] \to J_n$ such that $\varphi_n(\left\{\frac{1}{n+1}, \frac{1}{n}\right\}) = \left\{x'_{n+1}, x'_n\right\} = e(J_n)$. Then for all n > 0, $\hat{\varphi}_n = \bigcup_{m \geq n} \varphi_m$ defines a continuous function from $[0, \frac{1}{n}]$ onto $\bigcup_{m \geq n} J_m$; and since $\lim_n J_n = \{x\}$ then setting $\hat{\varphi}_n(0) = x$ we get a continuous path from $[0, \frac{1}{n}]$ onto $\{x\} \cup \bigcup_{m \geq n} J_m$ such that $\left(\hat{\varphi}_n(0), \hat{\varphi}_n(\frac{1}{n})\right) = (x, x_n)$, hence there exists an arc $\hat{J}_n \subset \{x\} \cup \bigcup_{m \geq n} J_m$ with $e(\hat{J}_n) = \{x'_n, x\}$. Then $\operatorname{diam}(\hat{J}_n) \leq \sum_{m \geq n} \operatorname{diam}(J_m) < 2^{-n+1}$ so $\delta(x'_n, x) < 2^{-n+1}$ and x is a δ -cluster value of (x_n) , hence (x_n) δ -converges to x, and since C is δ -closed then $x \in C$.

Lemma 3. $\mathcal{J}(X,\tau) = \mathcal{J}(X)$ and for any $J \in \mathcal{J}(X), t_{|J} = \tau_{|J}$.

Proof. If $J \in \mathcal{J}(X,\tau)$ and $\varphi : [0,1] \to X$ is a τ -continuous parametrization of J then φ is t-continuous; hence $\mathcal{J}(X,\tau) \subset \mathcal{J}(X)$.

Conversely if $J \in \mathcal{J}(X)$ then J is t-compact hence τ -closed, so δ -complete. Moreover if $\varphi : [0,1] \to X$ is a t-continuous parametrization of J, then by the uniform continuity of φ , for any $\varepsilon > 0$ we can find a covering of J by a finite family $(J_i)_{i \leq k}$ of arcs of d-diameter, hence of δ -diameter, $< \varepsilon$. So J is δ -complete and δ -precompact, hence τ -compact. It follows that $J \in \mathcal{J}(X,\tau)$ and $\tau_{|J} = t_{|J}$.

For any set $A \subset X$ and any $\varepsilon > 0$ let $\mathcal{T}_{\varepsilon}(A) = \{T \in \mathcal{T}(A) : \operatorname{diam}(T) < \varepsilon\}$. We recall that for an arc-wise connected set, in particular for a simple triod, the d-diameter and the δ -diameter are equal. If $S \subset \mathcal{T}(A)$ we shall say that:

- $-\mathcal{S}$ is an ε -total subset of $\mathcal{T}(A)$ if for all $T \in \mathcal{T}_{\varepsilon}(A)$ there exists $S \in \mathcal{S} \cap \mathcal{T}_{\varepsilon}(A)$ s. t. $S \cap T \neq \emptyset$
- $-\mathcal{S}$ is a total subset of $\mathcal{T}(A)$ if \mathcal{S} is ε -total for any $\varepsilon > 0$.

Lemma 4. $\mathcal{T}(A)$ contains a countable total subset.

Proof. For any $\varepsilon > 0$ fix a maximal family $\mathcal{S}_{\varepsilon}$ of pairwise disjoint simple triods in $\mathcal{T}_{\varepsilon}(A)$. Then each $\mathcal{S}_{\varepsilon}$ is an ε -total subset of $\mathcal{T}(A)$, so by Moore's Lemma $\mathcal{S}_{\varepsilon}$ is countable. Hence $\mathcal{S} = \bigcup_{n} \mathcal{S}_{\frac{1}{n}}$ is a total countable subset of $\mathcal{T}(A)$.

Lemma 5. If S is a total subset of $\mathcal{T}(A)$ then the set $\mathbf{c}(S)$ is τ -dense in $\mathbf{c}(\mathcal{T}(A))$.

Proof. Let U be a δ -open ball of center $x_0 \in A$ and radius r, such that $U \cap \mathbf{c}(\mathcal{T}(A)) \neq \emptyset$. Fix $T \in \mathcal{T}(A)$ and n > 0 such that $\delta(x_0, c_T) + \frac{2}{n} < r$. Replacing T by a subtriod (necessarily with the same center) we may suppose that $\dim T < \frac{1}{n}$. Since \mathcal{S} is a total subset of $\mathcal{T}(A)$ there exists some $S \in \mathcal{S}$ with $\dim(S) < \frac{1}{n}$ such that $S \cap T \neq \emptyset$. Then for any $x \in S \cap T$ we have $\delta(x_0, c_S) \leq \delta(x_0, c_T) + \delta(c_T, x) + \delta(x, c_S) < r$ hence $U \cap \mathbf{c}(\mathcal{S}) \neq \emptyset$.

We now fix a triodic arc-wise component C in X. Let $R = \mathbf{c}(\mathcal{T}(C))$ be the set of all centers of simple triods in C, and $S = \overline{R}^{\tau}$ be the τ -closure of R. Since C is τ -closed in X then $R \subset S \subset C$, and since C is an arc-wise component then

$$\mathcal{T}(C) = \{ T \in \mathcal{T}(X) : T \subset C \} = \{ T \in \mathcal{T}(X) : T \cap C \neq \emptyset \}$$

We recall that C is analytic, so since $\mathcal{T}(X)$ is a Borel subset of $\mathcal{K}(X)$, it follows from the previous equality that $\mathcal{T}(C)$ is analytic, and since the mapping \mathbf{c} is Borel then $R = \mathbf{c}(\mathcal{T}(C))$ is an analytic subset of X, and one can easily derive from this that S is an analytic subset of X too. However we have the following:

Lemma 6. (S,τ) is a Polish space, and S is a Borel subset of X.

Proof. (S, δ) is a complete metric space and it follows from Lemmas 4 and 5 that the space (R, δ) is separable, hence (S, τ) is a Polish space. So (S, t) is an injective continuous image of (S, τ) , hence (S, t) is an absolute Borel space, in particular S is a Borel subset of X.

Lemma 7. If J, J' are two arcs such that $J \not\subset J'$, $J \cap J' \neq \emptyset$ and $J \cap J' \not\subset e(J)$ then $\overset{\circ}{J} \cap J'$ contains the center of some simple triod.

Proof. By hypothesis $F = J \cap J'$ is a proper closed subset of J which meets $\overset{\circ}{J}$. So there exists some $c \in \overset{\circ}{J}$ which is the endpoint of some connected component of $J \setminus F$. Then c is the center of a simple triod of the form $J \cup J''$ with $J'' \subset J'$ and $c \in e(J'')$.

Lemma 8. Let
$$\mathcal{B}_S = \{(x, J) \in X \times \mathcal{J}(X); \ e(J) = \{x, y\} \text{ and } J \cap S = \{y\}\}.$$
 Then

- a) \mathcal{B}_S is Borel.
- $(b) \ \forall x \in X, card \ (\mathcal{B}_S(x)) \leq 2.$

In particular the projection $\pi(\mathcal{B}_S)$ of \mathcal{B}_S on X is Borel.

Proof. a) Observe that \mathcal{B}_S is the complement in $X \times \mathcal{J}(X)$ of the projection of the set:

$$\mathcal{A} = \left\{ (x, J, z) \in X \times \mathcal{J}(X) \times X : \exists i \in \{0, 1\} , e_i(J) = x , e_{1-i}(J) \in S \text{ and } z \in J \cap S \setminus e(J) \right\}$$

which is clearly Borel and all its sections $\mathcal{A}(x,J) = \overset{\circ}{J} \cap S$ are σ -compact, hence by the classical Arsenin-Kunugui Theorem \mathcal{B}_S is Borel.

b) Suppose that $(x, J) \in \mathcal{B}_S$: since $J \cap S \neq \emptyset$ and $S \subset C$ then $J \subset C$; and since $J \cap S = \emptyset$ then J does not contain the center of any simple triod in C. So if (x, J) and $(x, J') \in \mathcal{B}_S$ with $J \neq J'$ then by Lemma 7 we necessarily have $J \cap J' = \{x\}$, or else $J \cap J' = e(J) = e(J') = \{x, y\}$. It follows that $\mathcal{B}_S(x) = \{J, J'\}$ for otherwise x would be the center of a simple triod contained in C, which is impossible since $x \notin S$ and a fortiori $x \notin R$.

The last part of the conclusion follows then from part b) and again the Arsenin-Kunugui Theorem. \Box

Lemma 9. $C = S \cup \pi(\mathcal{B}_S)$.

Proof. If $x \in S \cup \pi(\mathcal{B}_S)$ then $x \in S$ or x can be joined to an element of S by an arc, so since $S \subset C$ then $x \in C$.

Conversely fix any element $x \in C$; if $x \notin S$ there exists an arc I with $e(I) = \{x, x_0\}$, hence $x \in I \setminus S$ and $x_0 \in I \cap S$. Since $S \cap I$ is a closed subset of I, there exists a sub-arc J of I such that $e(J) = \{x, y\}$ with $y \in S$, and $(J \setminus \{y\}) \cap S = \emptyset$, hence $\overset{\circ}{J} \cap S = \emptyset$; so $x \in \pi(\mathcal{B}_S)$.

It follows from Lemmas 6, 8, 9 that any triodic arc-wise component of X is Borel, which finishes the proof of Theorem 1.

Note that given any separable metrizable space X, if we set:

$$X = X^{(0)} \cup X^{(1)} \cup X^{(2)} \quad \text{where } \left\{ \begin{array}{l} X^{(0)} \text{ is the set of all quasi-isolated points,} \\ X^{(1)} \text{ is the union of all curve arc-wise components,} \\ X^{(2)} \text{ is the union of all triodic arc-wise components.} \end{array} \right.$$

then for any $x \in X$ we have:

$$\begin{array}{ll} x \in X^{(0)} \iff \forall \, y \in X, \, \, x = y \, \, \text{or} \, \, (x,y) \not \in E_X \\ x \in X^{(2)} \iff \exists \, T \in \mathcal{T}(X), \, \, x \in T \end{array}$$

So if X is Polish, since the space $\mathcal{T}(X)$ is Borel and the equivalence relation E_X is analytic, then $X^{(0)}$ is coanalytic and $X^{(2)}$ is analytic, and in this general setting the set $X^{(1)}$ appears as the difference of two analytic sets.

Proposition 10. Suppose that X is Polish. If $X^{(2)}$ is Borel then $X^{(0)}$ and $X^{(1)}$ are Borel.

Proof. By assumption $Y = X \setminus X^{(2)} = X^{(0)} \cup X^{(1)}$ is Borel hence the set $\mathcal{H} = \{(x,J) \in Y \times \mathcal{J}(X) : x \in J\}$ is Borel too, and $X^{(1)}$ is the projection of \mathcal{H} on the first factor. Moreover if $x \in X^{(1)}$ then $E(x) = \bigcup_{n \in \omega} \uparrow H_n$ is the increasing union of a countable family of arcs H_n , hence the section $\mathcal{H}(x) = \bigcup_{n \in \omega} \uparrow \mathcal{J}(H_n)$ is σ -compact. It follows then from Arsenin-Kunugui Theorem that the set $X^{(1)}$ is Borel, so $X^{(0)} = X \setminus (X^{(1)} \cup X^{(2)})$ is Borel too.

It follows then from Theorem 1:

Corollary 11. If X is a G_{δ} subset of the plane then the three sets $X^{(0)}$, $X^{(1)}$, $X^{(2)}$ are Borel.

- Remarks 12. (1) The proof of Theorem 1 does not give any bound on the Borel rank of E_X , which is most likely unbounded. However the situation is totally unclear concerning triodic arcwise components, even in the compact case (we recall that non-triodic arc-wise components are all σ -compact).
- (2) One can derive from Williams' work in [7] the construction of planar continua with an arcwise component which is an $\mathbf{F}_{\sigma\delta} \setminus \mathbf{G}_{\delta\sigma}$ set. The reader can also find in [5] an explicit geometrical example, by Malicki, of such a continuum.
- (3) The same boundedness questions can be considered also for the Borel decomposition $X = X^{(0)} \cup X^{(1)} \cup X^{(2)}$ of a planar G_{δ} (or compact) set X. Note that by Moore's Lemma a uniform bound for the Borel rank of arc-wise components provides a uniform bound for rank of the set $X^{(2)}$, but has no impact on the rank of the sets $X^{(0)}$ and $X^{(1)}$.
- (4) One can also derive from [7] the construction of a planar continuum K such that $K^{(0)}$ (which by Corollary 11 is Borel) is not an $\mathbf{F}_{\sigma\delta}$ set.
- (5) Fix an enumeration $(q_n)_{n\in\omega}$ for the set \mathbb{Q} of all rational numbers in [0,1], let $\mathbb{P}=[0,1]\setminus\mathbb{Q}$ and consider the Sierpinski function $f:\mathbb{P}\to[-1,1]$ defined by $f(x)=\sum_{n\geq0}2^{-n-1}\sin\frac{1}{q_n-x}$. Then f is clearly continuous and the closure in $[0,1]\times[-1,1]$ of the graph of f is a compact set K with no triodic arc-wise component and $K^{(0)}=\{(\alpha,f(\alpha));\ \alpha\in\mathbb{P}\}\approx\mathbb{P}$ is a $G_\delta\setminus K_\sigma$ set, hence $K^{(1)}=K\setminus K^{(0)}$ is a $K_\sigma\setminus G_\delta$ set.
- (6) Since the submission of the present paper we were able to improve Theorem 1 by proving that under the same hypothesis there exists a Borel function $\Phi: E_X \to \mathcal{J}$ wich assigns to any pair (x, y) of distinct elements in E_X , an arc J with endpoints $\{x, y\}$

Acknowledgment We would like to thank Roman Pol for pointing to us Williams' paper [7] and Malicki Thesis [5] mentioned above.

References

- 1. H. Becker, The number of path-components of a compact space, in: J.A. Makowsky, E.V. Ravve (Eds) Logic Colloquium' 95 (1995), 1–15.
- 2. H. Becker and R. Pol, Note on path-components in complete spaces, Top. and Appl. 114 (2001), 107–114.
- 3. K. Kunen and M.Starbird, Arc components in metric continua, Top. Appl. 14 (1982)167-170.
- 4. A. Le Donne, Arc components in metric continua, Top. Appl. 22 (1986) 83-84.
- 5. M. Malicki Master Thesis University of Warsaw (1999).
- R.L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. 14 (1928) 85–88.
- 7. J. Williams, Regarding arc-wise accessibility in the plane, Fund.Math. 85 (1974), 134-136,